Lucius Fox

Chief Executive Officer of Wayne Enterprises

wildcat2030:

A new quantum mechanical-based biosensor designed by a team at University of California, Santa Barbara offers tremendous potential for detecting biomolecules at ultra-low concentrations, from instant point-of-care disease diagnostics, to detection of trace substances for forensics and security. Kaustav Banerjee, director of the Nanoelectronics Research Lab and professor of Electrical and Computer Engineering at UCSB, and PhD student Deblina Sarkar have have proposed a methodology for beating the fundamental limits of a conventional Field-Effect-Transistor (FET) by designing a Tunnel-FET (T-FET) sensor that is faster and four orders of magnitude more sensitive. The details of their study appeared in the April 2, 2012 issue of the journal Applied Physics Letters. (via Ultra-sensitive electrical biosensor unlocks potential for instant diagnostic devices)

Posted at 7:00pm and tagged with: biosensors, diagnostics, medicine, technology,.

wildcat2030:

A new quantum mechanical-based biosensor designed by a team at University of California, Santa Barbara offers tremendous potential for detecting biomolecules at ultra-low concentrations, from instant point-of-care disease diagnostics, to detection of trace substances for forensics and security. Kaustav Banerjee, director of the Nanoelectronics Research Lab and professor of Electrical and Computer Engineering at UCSB, and PhD student Deblina Sarkar have have proposed a methodology for beating the fundamental limits of a conventional Field-Effect-Transistor (FET) by designing a Tunnel-FET (T-FET) sensor that is faster and four orders of magnitude more sensitive. The details of their study appeared in the April 2, 2012 issue of the journal Applied Physics Letters. (via Ultra-sensitive electrical biosensor unlocks potential for instant diagnostic devices)